
Electrical Charge and Field

The physical property of matter that causes it to experience as a force when placed in an electromagnetic field is called charge.

An object. Attends positively charged by losing electrons, while other can obtain negative charge by gaining electrons.

Laws of charges.

- 1. Opposite charges attract.
- 2. Similar charges repel.
- -Attraction or repulsion is a vector.

-Study of force field and potential when at rest is called 'electrostatics'.

-To know the amount of force we use 'Coulombs law'.

Properties of charges.

- 1. Charges always reset on the surface of the charged object.
- 2. Charges are always added.
- 3. Charges can never be created, not destroyed -

"Conservation of energy".

4. Charge on a body can be expressed as an. Integral multiple of basic unit of charge. $\boxed{q_{r} = \underline{r} \mathcal{N} e}$

Medical / Non Medical B.Tech / Foundation

Abhijit's Institute of Engineers	
I A metal sphere has a charge of -GMC. when 5×10'2 electrons are remon from the sphere, what would be the met charge onit.	ed
Sol , electerns lemoned = 5×10°. which means it goin the charge.	
q = 6/lc. $q = 5 \times 10^{12} \times 1.6 \times 10^{-19}$. $= 8 \times 10^{-7} = 0.8 \times 10^{-6} C$.	
Net charge = -6/l + 0.8/l = -5.2/l c. 9 = +0.8/l c.	

Coulomb's Law

1

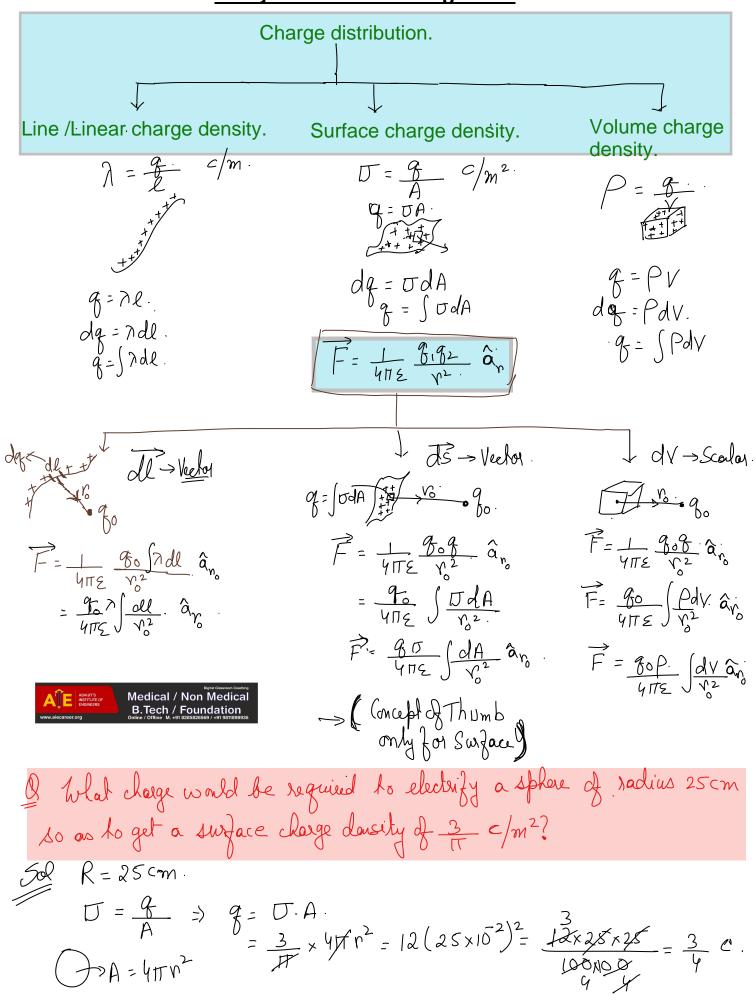
$$(\cdot) \qquad (\cdot)^{02}$$

$$F \propto \frac{g_1g_2}{\gamma^2}$$

$$F = K \frac{g_1g_2}{\gamma^2}$$

$$F = \frac{1}{4\Pi \epsilon} \frac{g_1g_2}{\gamma^2}$$

G.


 $K = \frac{F_{rr}^{2}}{g_{1}g_{2}} \xrightarrow{N m^{2}/2}$ $F = \frac{1}{2} \xrightarrow{P} F = \frac{1}{2$

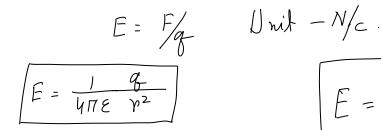
 "Force of attraction or repulsion between two stationary point charges is directly proportional to the product of charge and inversely proportional to the square of the distance between them".

Abhijit's Institute of Engineers
I what is the force between two small charged sphere having charge of. 2 × 10 ⁷ C and 3 × 10 ⁻⁷ C placed 30 cm a part in air?
$\frac{502}{F} = \frac{1}{4\pi\epsilon} \frac{9.92}{r^{2}} \Rightarrow 9 \times 10^{9} \times \frac{2 \times 10^{7} \times 3 \times 10^{7}}{(30 \times 10^{-2})^{2}}$
$= \frac{9 \times 2 \times 3}{30 \times 30} \times \frac{10^{9-7-2}}{10^{-4}}$
$= 6 \times 10^{-2} \times 10^{-5+4} = 6 \times 10^{-3} N.$
I Ile Sund two point charges is FMC. They refel each offer with F= IN when bept 30cm aport in free space. Calculate the value of
$\begin{array}{ccc} \text{lach charge} & & \\ \text{Sol} & & \\$
$F = 1N$ $F = 9(x10^{9} \times \frac{x(7-x)(10^{6})^{2}}{900 \times 10^{-9}} = 1$ $I = 1 \times 10^{-6}$
$\frac{1}{10} \times 10^{12} \times 10^{12} \times (7-x) = 1$
$7x - x^2 = \frac{1}{10^{11} \times 10^{12}}$
$\chi^{2} - 7\chi + 10 = 0$ $\chi^{2} - 5\chi - 2\chi + 10 = 0$
$\chi(\chi-\bar{s}) = \lambda(\chi-\bar{s}) = 0$
(n-2)(n-5) = 0
$\chi = 2C$ $\chi = 5C$
J Forces between multiple clarges Superposition.
$F_{I4} = F_{12} + F_{13} + F_{14} + \dots + F_{1n}$ $F_{I2} = F_{12} + F_{13} + F_{14} + \dots + F_{1n}$ $F_{In} = \frac{1}{4\pi\epsilon} \frac{g_1g_2}{Y_{12}^2} + \frac{1}{4\pi\epsilon} \frac{g_1g_3}{Y_{13}^2} + \dots + \frac{1}{4\pi\epsilon} \frac{g_1g_n}{Y_{1n}^2}$
$q_2 \qquad \qquad$
$F_{1i} = \frac{q_1}{4\pi\epsilon} \sum_{i=2}^{n} \left(\frac{q_i}{\gamma_{1i}^2}\right)$
www.aiecareer.org //// Mob/Whatsapp/PTM No. 8285826569

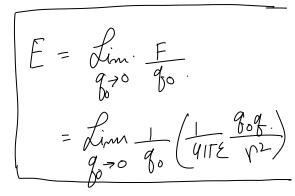
Abhijit's Institute of Engineers

Digital Classroom Coaching Medical / Non Medical **B.Tech / Foundation** Online / Offline M. +91 8285826569 / +91 9811898935

www.aiecareer.org

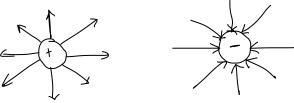

 $\frac{\text{vitive charge}(\text{Test charge})}{= \pm 1 \text{ c}} \xrightarrow{F_1} \xrightarrow{F_2} \xrightarrow{F_1} \xrightarrow{F_2} \xrightarrow{F_1} \xrightarrow{F_2} \xrightarrow{F_1} \xrightarrow{F_2} \xrightarrow{F_3} \xrightarrow{F_1} \xrightarrow{F_2} \xrightarrow{F_2} \xrightarrow{F_1} \xrightarrow{F_2} \xrightarrow{F_1} \xrightarrow{F_2} \xrightarrow{F_2} \xrightarrow{F_2} \xrightarrow{F_1} \xrightarrow{F_2} \xrightarrow{F_2} \xrightarrow{F_2} \xrightarrow{F_1} \xrightarrow{F_2} \xrightarrow{F_2} \xrightarrow{F_1} \xrightarrow{F_2} \xrightarrow{F_2}$

The force that a unit positive charge would experience if placed at that point.


$$F = \frac{1}{4\pi\epsilon} \frac{g_1g_0}{\gamma^2}$$

$$E = \frac{F}{g_0} = \frac{1}{4\pi\epsilon} \frac{g_1}{\gamma^2}$$

Electric field is force per unit charge.



To get a visual effect, we draw imaginary curves called 'electric field lines'. But the field is real.

Rules

1. Lines will always come out from positive charge and will terminate at negative charge.

- 2. They are continuous.
- 3. No lines can cross each other.

4. The closeness of line tells the strength of electric field.

5. No lines are present inside the conductor.

Abhijit's Institute of Engineers
A pariale of messm and charge $-q$ is moving around a charge q_2 in a. Given lass path of Radius'r'. Prove the period of Revolution $T = \sqrt{\frac{16\pi^2 \epsilon_0 m^2}{8:62}}$
$\frac{mv}{r} = \frac{1}{4\pi\epsilon} \frac{\delta_1 \delta_2}{r^2} \qquad \qquad V = \frac{D}{\tau} = \frac{2\pi r}{T}$ $V = \frac{\delta_1 \delta_2}{r^2} \qquad \qquad V = \frac{\delta_1 \delta_2}{T}$ $V = \frac{\delta_1 \delta_2}{r^2}$ $V = \frac{\delta_1 \delta_2}{r^2}$ $V = \frac{\delta_1 \delta_2}{r^2}$
$\frac{4\pi^{2}r^{2}}{r^{2}} = \frac{9ig_{2}}{4\pi\epsilon r^{3}} :. T^{2} = \frac{16\pi\epsilon^{2}r^{3}m}{9i\theta_{2}} \\ T = \sqrt{\frac{16\pi^{3}r^{3}m\epsilon}{9i\theta_{2}}} :. T^{2} = \frac{16\pi\epsilon^{2}r^{3}m}{9i\theta_{2}} $
I two particle, each having a mass of 5g and charge 1×10-7c, shay in limiting equilibrium on a horizontal habe with a separation of 10 com between flem. Find M.
$ \int \int \frac{F_{z}}{2} \int \frac{1}{\sqrt{1-\frac{1}{2}}} \int \frac{1}{$
$M = \frac{9}{5 \times 98} = 0.18367 \text{ Medical / Non Medical}$ $M = \frac{9}{5 \times 98} = 0.18367 \text{ Medical / Second Adding}$ $M = \frac{9}{5 \times 98} = 0.18367 \text{ Medical / Second Adding}$ $M = \frac{9}{5 \times 98} = 0.18367 \text{ Medical / Second Adding}$
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} Suppose \ \ le \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$\frac{1}{2}$

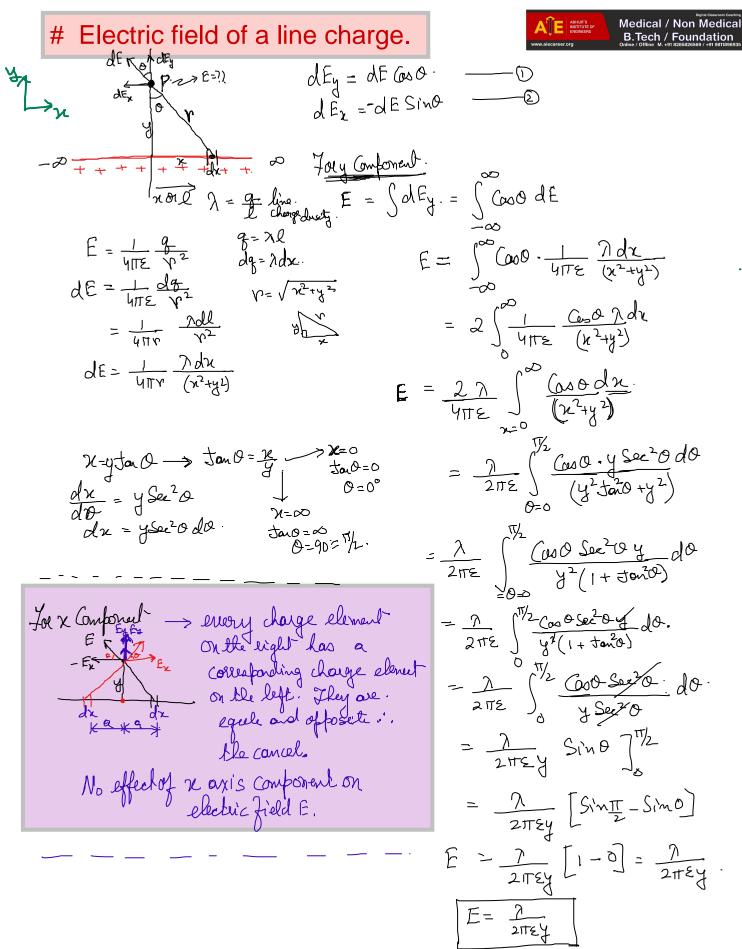
Abhijit s institute of Engineers	
I Two Idedical charges, & each, are best at a distance of r from each other. a Mird charge q is chlaced on the liming joining the above two charges, such that all the three charges are at equilibrium. What is the magnitude sign and position of the darge q.	
$F_{1} = F_{2}$	
$F = \frac{1}{4\pi\epsilon} \frac{g_{0}}{N_{2}} = \frac{1}{2\pi\epsilon} \frac{g_{0}}{r} \rightarrow hag \qquad \qquad \chi = r - \chi \qquad \qquad \chi = r \\ Mid point of r \qquad $	
Position → Midpann. Q A charge Q is divided into two objects. What should be the Value of larges on the two objects so that the zorce between the objects larges on the two objects so that the zorce between the objects be maxium? Sol Let one of object have charge of then the other in (Q-q). E- K g (Q-q)	
$1 - 1 - \frac{1}{2}$	
To find may we need to differenciate and make equile to 300. $\frac{dF}{dq} = \frac{Kd}{v^2 dq} \begin{pmatrix} Qq - q^2 \end{pmatrix} \\ \frac{dF}{dq} = \frac{K}{v^2 dq} \begin{pmatrix} Q - 2q \end{pmatrix} = 0 \\ \frac{dF}{dq} = \frac{K}{v^2} \begin{pmatrix} Q - 2q \end{pmatrix} = 0 \\ \frac{dF}{v^2} = \frac{Q}{v^2} \end{pmatrix}$	
. Charge needs to occurate if any,	
I To Identical sphere, lawing clarge of opposite sign attack eachother with a force of 0.108N when separated by 0.5m. spheres are connected by Conducting wire, which then removed and there after they refer eachother with a force of 0.036N. What were the Smitrial charges on the	
www.aiecareer.org //// Mob/Whatsapp/PTM No	

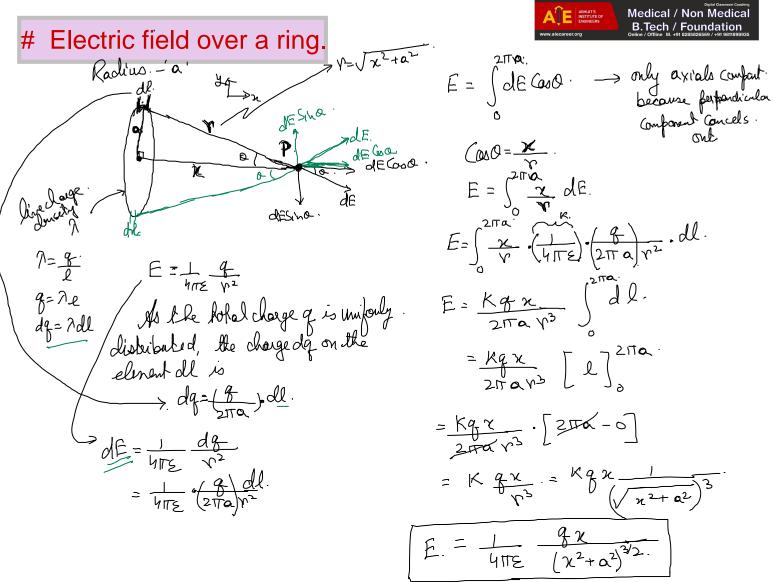
Abbijit's Institute of Engineers

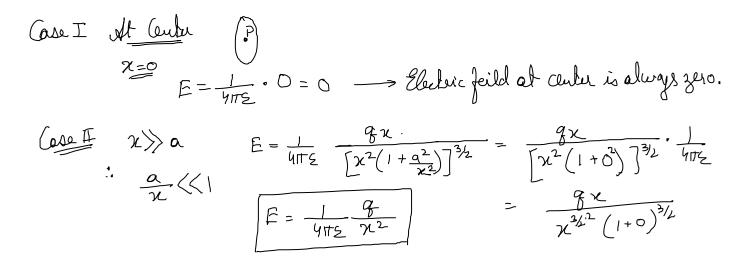
$$\int_{a}^{b} \int_{a}^{b} \int_{a}^{b}$$

I An infinite number of charges each equile to 4/11 are placed along zaxis at $\chi = 1m, \chi = 2m, \chi = 4m, \chi = 8m$ and so on. Find the total force on the charge of 1 C, placed at the origin.
$Sol = \frac{3}{80} \frac{3}{12} \frac{3}{4} \frac{3}{8} \frac{3}{16} \frac{3}{1$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
& Consider 3 charges. q. q. q. q. each equile to q at the vertices of equilateral triangle of side l. What is the jokce on the charge & placed at the centraid.
$F_{y} = F_{z} S_{z} MO + F_{z} S_{z} MO - F_{z}$ $F_{z} = F_{z} S_{z} MO - F_{z}$ $F_{z} = 2FS_{z} MO - F_{z}$ $F_{z} = F_{z} G_{z} S_{z} - F_{z}$ $F_{z} = F_{z} G_{z} S_{z} - F_{z}$
$F_{A} = \frac{1}{4\pi\epsilon} \frac{4_{1}R}{r}$ $F_{B} = \frac{1}{4\pi\epsilon} \frac{8_{1}R}{r}$ $F_{C} = \frac{1}{4\pi\epsilon} \frac{8_{1}R}{r}$
$F_{R} = \chi F_{X} \pm F_{F} = F - F_{F}$ $F_{R} = 0 N$
I tot equilateral triangle, q, q, -q is placed at vertias as shown, what is the force on each charge. Medical / Non Medical
WWW.alecareer.org B.Tech / Foundation Online / Offline M. +91 8285826568 / +91 9811888935

Abbijit's Institute of Engineers


$$f_{1} = \frac{1}{2} \frac{1}{12} \frac{1}{2} \frac{1}{12} \frac{1}{1$$


Abilight 5 listitute of Li	Igilleers	
I de electron falls through a distance of 1: The direction of field is reversed and a f (Fig b) Compute the time of fall in ear	S cm in E = 2×10 ⁴ A broton falls thragh ch case.	I/c. (Fig a) same distare
Sol $F=ma$ $gE=ma$ $a=\frac{gE}{m}$	$E \int \int \mathbf{J} \mathbf{J} \mathbf{F} \mathbf{I} \mathbf{F} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} I$	$\frac{+++++}{F_{i}}$
$\begin{array}{c} figa \\ \hline Q_{2} = \frac{qE}{m} = \frac{1.6 \times 10^{-19} \times 2 \times 10^{4}}{9 \times 10^{31}} \\ \chi = 1.5 \times 10^{-2}m \\ \chi = 4 + \frac{1}{2} at^{2} \rightarrow t^{2} = \frac{2\chi}{a}; t = \frac{1}{2} t^{2} + \frac{1}{2} at^{2} - \frac{1}{2} t^{2} + \frac{1}{2} at^{2} + 1$	2×1.5×10 ⁻² ×9×10 ⁻¹ 1.6×10 ⁻¹⁹ ×2×10 ⁴	- 3/ =
Figh $\alpha_e = \frac{qE}{m} = \frac{1.6 \times 10^{-19} \times 2 \times 10^{4}}{1.67 \times 10^{-27}}$	· 2,9 × 10 9 S.	
$\chi = \mu t_{+} \frac{1}{2} a t^{2} \rightarrow t^{2} = \frac{2\kappa}{\alpha} = t = \sqrt{\frac{2\kappa}{1}}$	$\frac{5 \times 10^{-2} \times 1.67 \times 10^{-23}}{5.6 \times 10^{-19} \times 2 \times 10^{-9}} = 1$	25 x 10 ⁻⁷ S.
A charge particle of charge 2MC and mass 100 enters a uniform electric field of stranget 10- direction of motion. Find the velocity and	ng moving with a ve 3 Nc. derected perfords	locity of 1000 m/s cular ho the
$m = 10 \times 10^{5} \text{ Kg}$	$x = 10^3 N/c.$	$= \mathcal{G} \mathcal{E}_{x} = \mathcal{O} \mathcal{A}_{x}$ $\equiv \frac{\mathcal{G} \mathcal{E}_{x}}{\mathcal{O}}$
V = 1000 m/s. $E = 10^3 \text{ N/c}.$ V = ?? = 2?? t = 105ec. $V = \frac{1000}{3} \text{ R}.$	$ \begin{aligned} \dot{\chi} &= U_{\chi} + a_{\chi}t \\ V_{\chi} &= 0 + \frac{g E_{\chi}}{m} t \\ &= \frac{2 \times 10^{-6} \times 10^{-3} \times 10^{-3}}{10 \times 10^{-6}}. \end{aligned} $	- = 2×10 ³
2 ODD $\sqrt{=} R = \sqrt{105^{\circ}^{2} + 2000^{\circ}}$ $= \sqrt{10^{6} + 4 \times 10^{\circ}}$ Dependence Castra	$6 = 0 + 1 \frac{9Ex}{9Ex} t$	= 10,000m.
Medical / Non MedicalB. Tech / Foundationwww.alecareer.org Medical / Non Medical B. Tech / FoundationOnline / Offline M. 491 8285025599 / 491 891 1938935	$\chi = \frac{1}{2} \frac{2 \times 10^{-6}}{10 \times 10^{-6}}$	$\frac{\times 10^3}{0^6} \times 10^{1}.$


www.aiecareer.org //// Mob/Whatsapp/PTM No. 8285826569 X= (0000 m.

Abhijit's Institute of Engineers
§ Two Point charge + 16/1 c and -9/1 c are placed 8 cm abort in air . Determine the position of the point at which the resultant field is zero. $R = \sqrt{\chi^2 + y^2}$. $D = R = \sqrt{(10000)^2 + ((10000)^2)}$ $= 10000\sqrt{2}$. Mathematical
Sol + 16/1 C. HC = -9/1 C $E_1 + E_2 = 0$ $E_1 + E_2 = 0$ $E_1 + E_2 = 0$ $HTE = \frac{9/1}{x^2} + \frac{9/1}{417} = 0$
$\frac{4}{\chi} = \frac{3}{8-\chi} = 32-4\chi = 3\chi$ $\frac{4}{\chi} = \frac{3}{8-\chi} = 32-4\chi = 3\chi$ $32 = 7\chi$ $\frac{4}{\chi} = \frac{3}{8-\chi} = 4.57 \text{ cm}$
ABCD is a square of Side 5 cm. charges of +50C, -50C and +50C are placed. at A, C and D resp. Find the resultant field at B.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$E_{A} = \frac{1}{4\pi^{2}} \cdot \frac{50}{(5\times10^{2})^{2}} = \frac{9\times10^{9}\times50}{25\times10^{-9}} \qquad $
$E_{\rm D} = \frac{1}{417\epsilon} \cdot \frac{50}{(5\sqrt{2} \times 10^{-2})^2} = \frac{9\times10^9\times50}{5^{5}\times10^{-4}}$ $= 9\times10^{13}{\rm N/c},$ $= \sqrt{\frac{1}{2}\left[(9+18\sqrt{2})^2 + (9-18\sqrt{2})^2\right]} \times 10^{13}$
$E_{C} = \frac{1}{4\pi\xi} \frac{50}{(5\times10^{2})^{2}} = 18\times10^{13} \text{N/c} \qquad = \sqrt{\frac{1458}{2}} \times10^{13}$
$E_{R} = \frac{27 \times 10^{13} \text{ N/c.}}{10^{13} \text{ M/c.}}$ $E_{R} = \frac{9 - 18\sqrt{2}}{10^{13}} \times 10^{13} = \frac{1 - 2\sqrt{2}}{1 + 2\sqrt{2}} = \frac{-1.828}{3.828}$ $E_{C} = \frac{1 - 2\sqrt{2}}{1 + 2\sqrt{2}} = \frac{-1.828}{3.828}$ $\int a_{10} = -0.4775$
$E_{e} = \frac{E_{e}}{E_{R}} = \frac{27 \times 10^{13} \text{ N/c}}{M/c}$ $\int d = \int an (0.4775) = -25.52^{\circ}$ <u>www.aiecareer.org</u> //// Mob/Whatsapp/PTM No. 8285826569

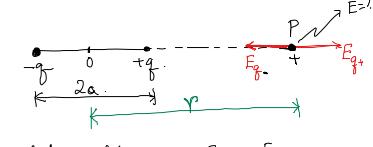
Q & charge sphere has surface charge density $\overline{D} = 0.7 \ C/m^2$. If its charge is increased by 0.44C, the charge density charges by 0.14C/m ² . Find the radius of the sphere and Initial charge on it.
$\frac{Sol}{D} = \frac{q}{A} = \frac{q}{4\pi R^2} = 0.7. \qquad \text{(ase II)} \qquad \frac{q}{4\pi R^2} = 0.14 + 0.7.$ $\frac{q}{4\pi R^2} = 0.84.$ $\frac{q}{0.7} = \frac{q}{0.84.} \qquad = 0.84.$
$\frac{2}{4\pi R^2} \stackrel{=}{\longrightarrow} R = \sqrt{\frac{2}{2\pi}} = 0.5m$
I 41T × 0.7 I 64 drops of Radius 0.02 m and each carrying a charge of SMC are combined to John a bigger drop. Find How the surface density of electrification will charge if no charge is last. Charge.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
large clock = $(-R)$ $V = \frac{4}{3} + R^3$
$64 \times \frac{4}{3} \pi (0.02)^3 = \frac{4}{3} \pi R^3$
$4 \times 0.02 = R = 0.08 m$
Small deap large dop.
$U_{S} = \frac{g}{A} = \frac{SU}{4\pi \gamma^{2}}$ $U_{L} = \frac{S \times 64 U}{4\pi R^{2}}$ $U_{L} = \frac{S \times 64 U}{4\pi R^{2}}$
$\frac{D_{s}}{D_{L}} = \frac{\frac{gR_{y}}{4\pi}r^{2}}{\frac{gR_{y}}{4\pi}r^{2}} = \frac{R^{2}}{64r^{2}} = \frac{\frac{1}{64r^{2}}r^{2}}{\frac{64r^{2}}{4\pi}r^{2}} = \frac{\frac{1}{64r^{2}}r^{2}}{\frac{64r^{2}}{4\pi}r^{2}} = \frac{1}{64r^{2}}$
$\frac{D_{s}}{D_{4}} = \frac{1}{4} \implies D_{1} = 4 \overline{D_{s}}.$
- The large drop will have 4 times more surface charge density. than the small drop.
www.aiecareer.org //// Mob/Whatsapp/PTM No. 8285826569

Dipole - Two equal and opposite charges placed very close to each other.

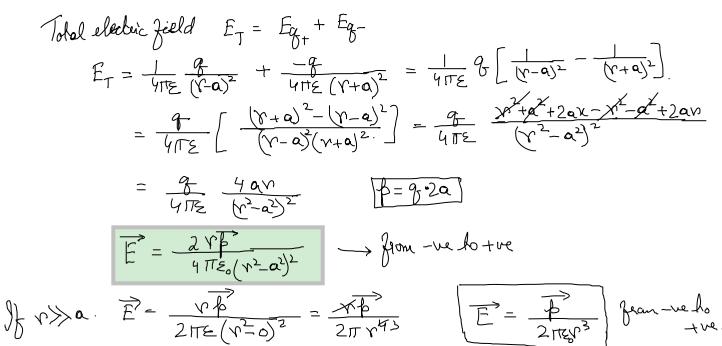
In dipole we analyze - 1. electric field of dipole. 2. Torque in a dipole.

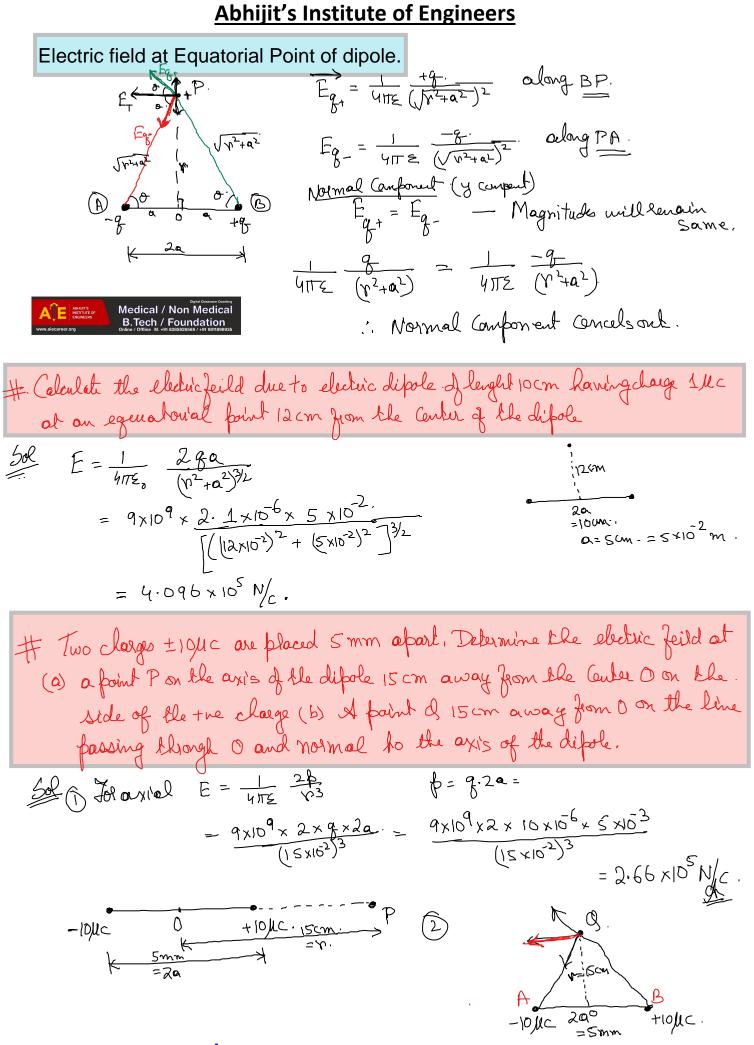
Dipole moment- It measures the strength of electric dipole.

Dipole moment = Charge X Distance from negative to positive charge.



Umit -Cm. Coulomb meter


Dipole field- It is the electric field produced by the dipole.



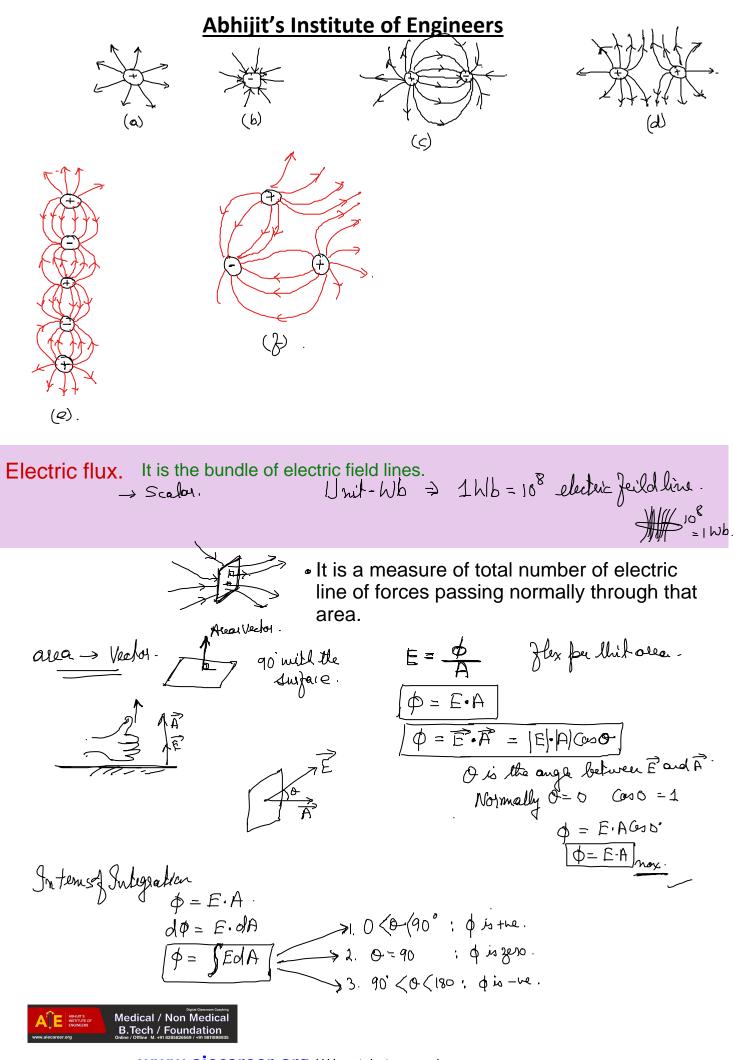
1. Electric field at Axial point of electric dipole.

Abbilit's Institute of Engineers

$$\vec{F} = \frac{1}{4\pi\epsilon} = \frac{9\pi^{2}a}{4\pi\epsilon} = \frac{10\times10^{6}\times9\times10^{3}\times5\times10^{3}}{(15\times10^{5})^{5}} = \frac{1}{12}3\times10^{5}N/c}$$

$$\vec{F} = \frac{1}{4\pi\epsilon}v^{3} = \frac{9\pi^{2}a}{4\pi\epsilon}v^{3} = \frac{1}{(15\times10^{5})^{5}} = \frac{1}{12}3\times10^{5}N/c}$$

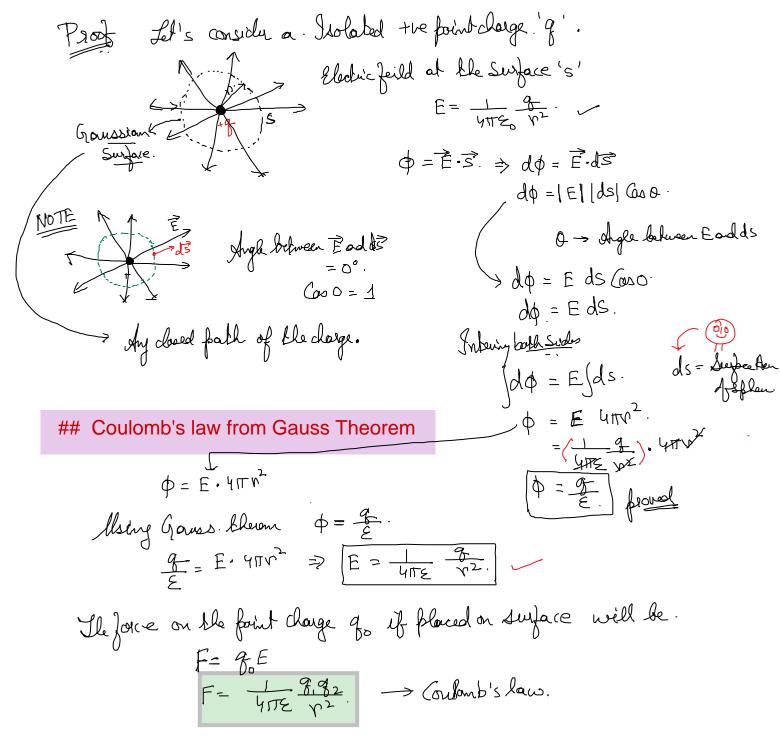
$$\vec{F} = \frac{1}{12}v^{3} = \frac{1}{12}v^{3} = \frac{1}{12}v^{3}$$

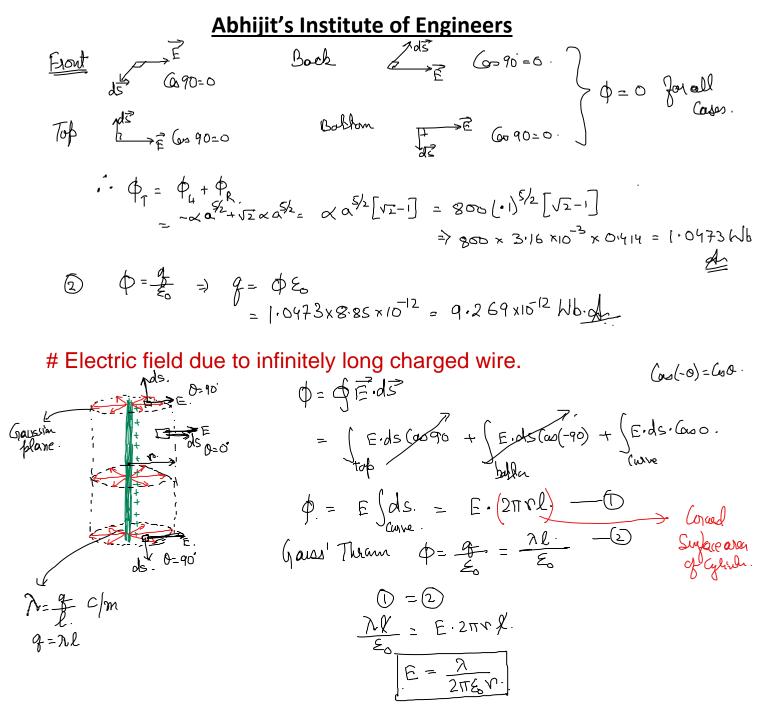

$$\vec{F} = \frac{1}{12}v^{3} = \frac{1}{12}v^{3} = \frac{1}{12}v^{3}$$

$$\vec{F} = \frac{1}{12}v^{3} = \frac{1}{12}v^{3} = \frac{1}{12}v^{3}$$

$$\vec{F} = \frac{1}{12}v^{3} = \frac{1}{12}v^{3} = \frac{1}{12}v^{3}$$

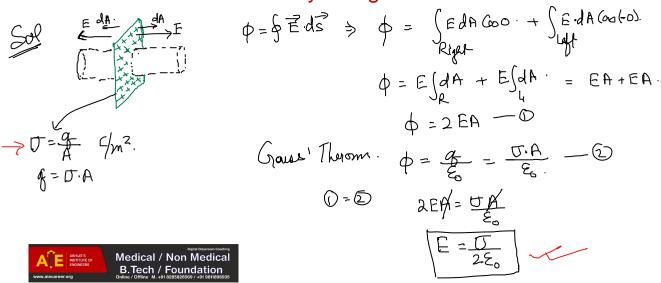
$$\vec{F} = \frac{1}{12}v^{3} = \frac{1}{12}v^{3} = \frac{1}{12}v^{3}$$

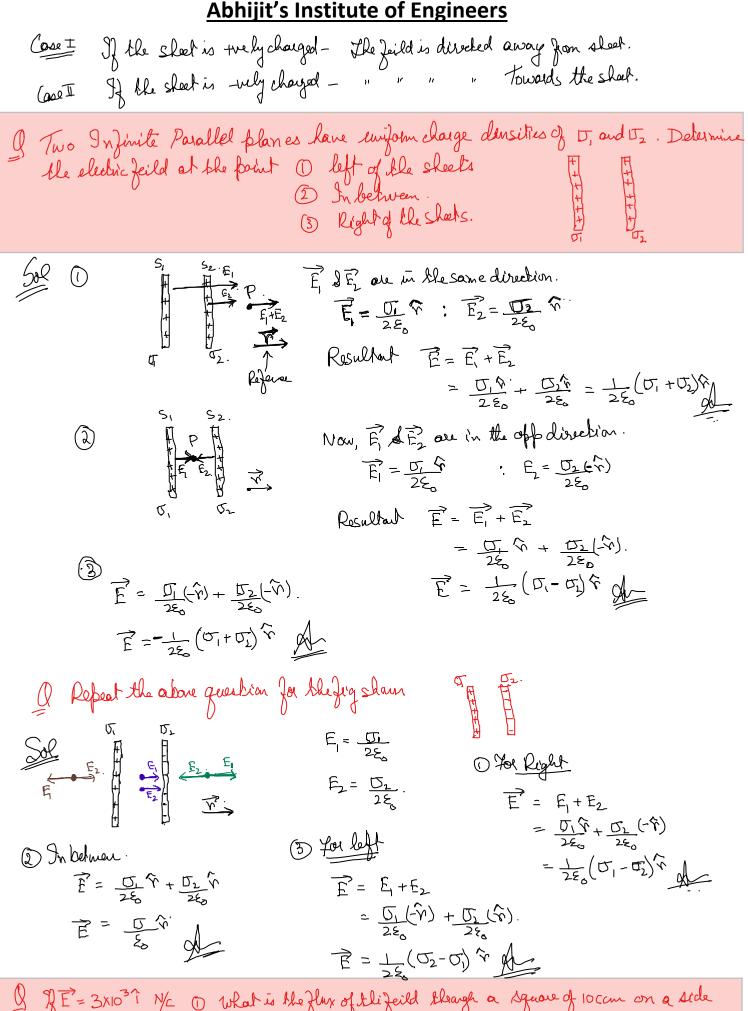

$$\vec{F} = \frac{1}{12}v^{3} = \frac{1}{12}v^$$



Gauss' Theorem

Total flux through a closed surface is $1/\varepsilon_{\circ}$ times the net charge enclosed by the closed surface


- This law is true for any closed surface, no matter what its shape or size
- Often used for symmetric shape



electric field due to uniformly charged sheet

&= D.A

J Z E = 3×10³î N/c D What is the flux of this field though a square of 10 cm on a side whose plane is favolled to the YZ plane? D what is the flux blough the same <u>www.aiecareer.org</u> /// Mob/Whatsapp/PTM No. 8285826569

An electric dipole (on	sist of two clarges of 0.1 Mc. separated by a distance of .
2 cm. Ile dipole is p	laced in an external field of 105 N/c. What maxium :
horque does the fie	Icl exert on the dipole?
Sol $2l = 2 \times 10^{-2} \text{m}$ 701 Max Sim 0 = 1 $8 = 90^{-1}$	$\begin{aligned} & \chi = \vec{p} \times \vec{E} \\ &= \vec{p} \cdot \vec{E} \cdot \text{Sin} Q \cdot \\ &= q \cdot 2 \vec{L} \cdot \vec{E} \cdot \vec{1} \\ &= 0 \cdot 1 \times \vec{0} ^6 \times q \times \vec{0} ^2 \times \vec{0} ^5 = 0 \cdot q \times \vec{0} ^3 N \cdot m \\ &\chi = q \times \vec{0} ^4 N \cdot m \cdot M \text{A} \end{aligned}$

work done on a dipole in a uniform electric field

When an electric dipole is placed in a uniform electric field, it experiences torque and tends to align it in such a way to attend a stable equilibrium.

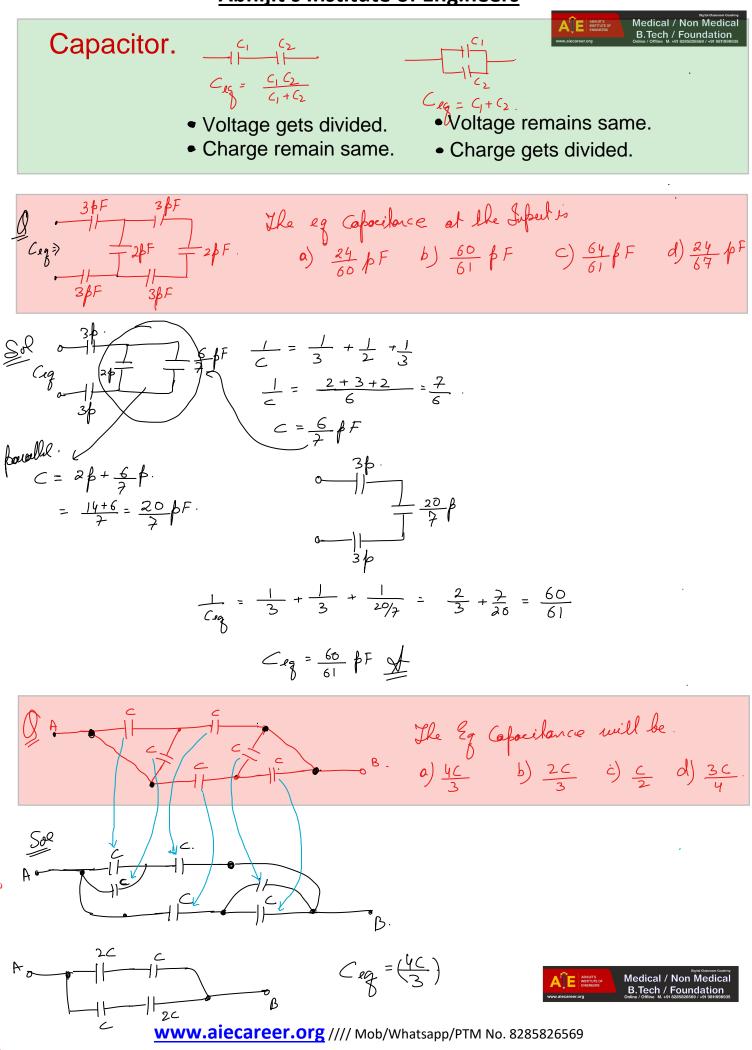
we know
$$W = F \cdot x \cdot - lineon$$
.
For Robotion $\rightarrow W = 70^{\circ}$.
For small dange $dW = 2 \cdot do$.
 $dW = [fr \cdot ESin0] do^{\circ}$.
 $M = fre[Sin0 do]$.
 $W = fre[Coro]_{0}^{0}$.
 $W = fre[Coro]_{0}^{0}$.
 $W = fre[(0 \circ 0_{1} - 6 \circ 0_{2})] \longrightarrow P \cdot E$.
Workdone is potential energy, in solating the dipole from.
 $Mgle 0, lo 0$.
 $U = W = fre[Coro 0_{1} - 6 \circ 0_{2}]$.
We assume the dipole is initially perpendicular to the direction of the field and brought to a condition making an angle of Theta. (6).

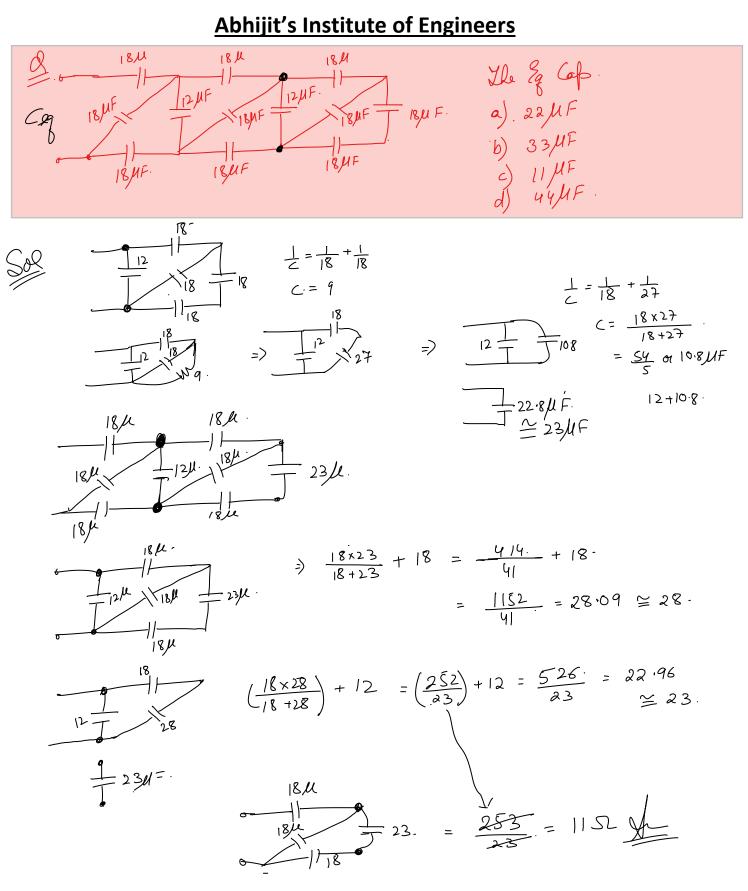
WWW.discarder org

 $\frac{\text{I / Non Medical}}{(\text{onclutian making an Argle GO}}$ $U = \int E[(as 90 - (as O)] = -\int E (as O)$ $\frac{\text{WWW.aiecareer.org}}{U = -\int e^{-1} e^{$

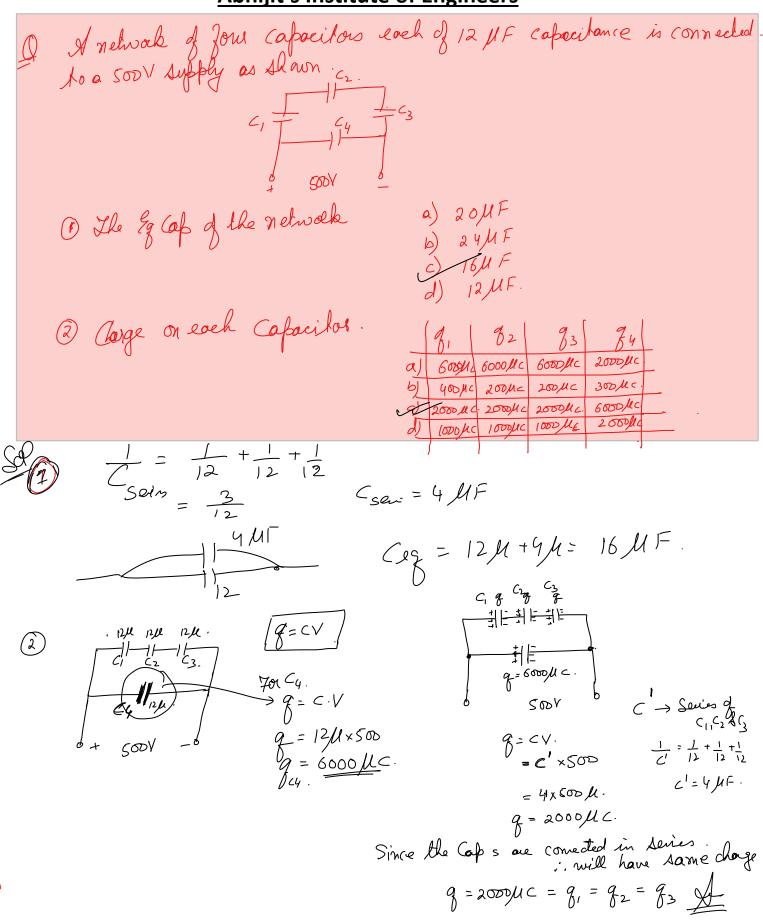
Abhijit's Institute of Engineers

I An electeic dipole of moment 2×10° cm is aligned in a Uniform electeric field of 2×10° N/c. (alculate the workdone in zolating the dipole from 30° to 60°. $U = f E \left[C_{cos} O_1 - C_{cs} O_2 \right]$ Sof $p = 2 \times 10^8 \text{ Cm}$. $= 2 \times 10^8 \cdot 2 \times 10^4 / (\cos 30^{\circ} - \cos 60^{\circ})$ $E = 2 \times 10^4$ N/c. $= 4 \times 10^{-4} \left[\frac{\sqrt{3}}{2} - \frac{1}{2} \right]$ $\bigcup = 2(\sqrt{3} - 1) \times 10^{-4} \text{ J}.$ U = 1.46 4×104J-An electeic dipole of lengert 2 cm, when placed with its axis making an angle of 60° with a uniform electric field, experiences a toque of 8V3 N.M. Calculate the P.F. of dipole, if it has a charge g=4nC. $U = \oint E \left[G_{0} 90 - G_{0} G_{0} \right]$ C = p. ESino 2a= 2×10-2m. $E = \frac{\gamma}{\beta sin \alpha}$ Q== 60° $\bigcup = 8 \times 10^{-11} \times 2 \times 10^{11}$ ~= 8V3.N·m. $\begin{bmatrix} 0 - \frac{1}{2} \end{bmatrix}$ $g = \pm 4 \times 10^{-9} C$ 8 K 10" × Sin 60 \$= 8.2a = 4 × 109 × 2 × 102. = <u>8/8 ×2</u> 8 ×10⁻¹¹ × V8 $\int = -16 \times \frac{1}{2} = -8 \text{ J}$ = 8×10-" cm. E= 2×10" N/C. Mining Colling And Distinguish between diebeteic and (anducher -Sol Dielecteric are non conductors and do not have free electeonsatall, while conductors have free electeons in any volume which makes. them to pass the electricity theory them. Différence between charge ad Mars. Charge. Mass 1. Maybe +ve, -ve, of 300. 2. Quantized. I. Always +ve. 2. yet to be established. Mass is not, it is charged ho energy. The gravitational force between. Two masses is always atteactivit. F= G mim2/22. 3. Electuic charge is Conserved. 3. 4. Force of Attraction of Repulsion exists. 4. F= KB182/82 Ś

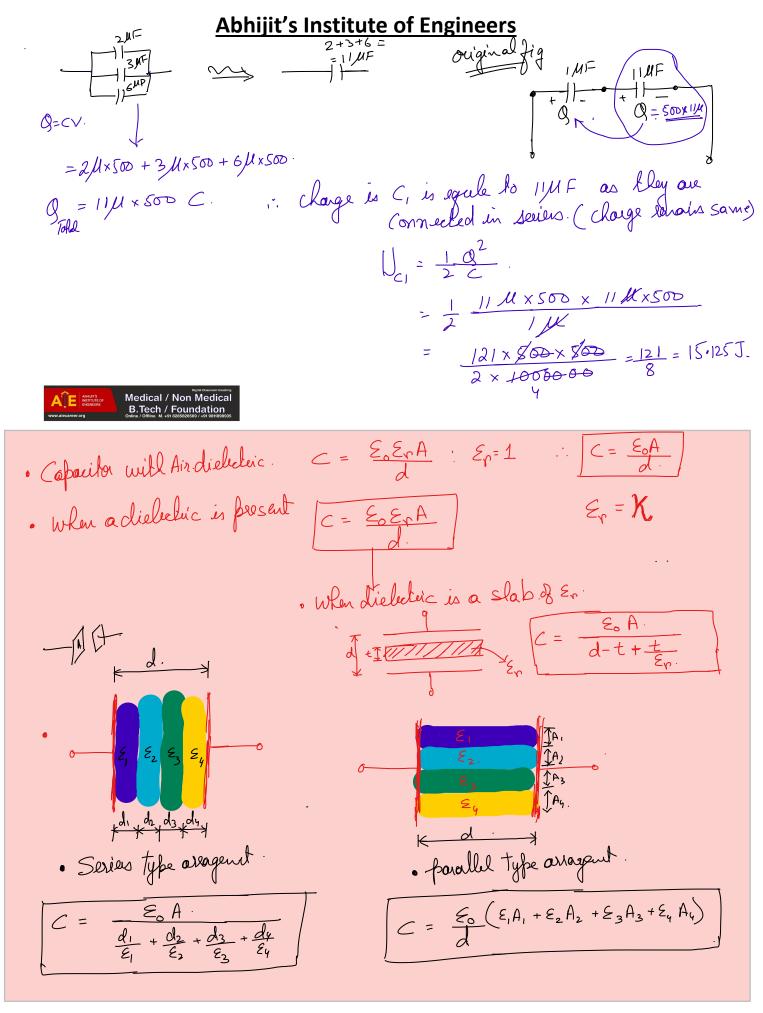

bhijit's institue/ www.aiecareer.org /8285826.


Field due to a uniformly charged thin spherical shell Let obe the Uniform Anglace charge density of a thin spherical shell of radius "R". Let find 'E'. Case I Af a point outside the shell. r>R $\phi = \int \vec{E} \cdot d\vec{s} = - \vec{E}$ \$= (E.ds. Goo $\phi = E \int ds$ R Q=0' gaussia $\phi = E \cdot 4\pi \gamma^2 = \frac{4}{\varepsilon_0} \Rightarrow E = \frac{4}{4\pi\varepsilon_0^2}$ 75. GOO=1 $E = \frac{4\pi R^2 \sigma}{4\pi \epsilon_0 r^2}$ $E = \frac{\sigma R^2}{\epsilon_0 r^2}$ given of = _____ = mi $\mathcal{D} = \frac{q_{-}}{4\pi R^2}$ 9=41TR2 J. $\vec{E} = \frac{DR^2}{Sr^2} \hat{r}$ CaseI At a point on the surface of the shell (r=R) $E = \frac{D}{\varepsilon_0}$ $E = \frac{D}{\varepsilon_0}$ $F = \frac{\sigma R^2}{\epsilon \rho^2} = \frac{\sigma}{\epsilon}$ Constant Case III. At a point inside the shell (r < R) $= \frac{1}{2} \text{ Lhis gassian flage does not enclose any charge, as the.} \\ + \frac{1}{2} \text{ larges are present at the surface.} \quad g=0 \\ \varphi = \int \vec{E} d\vec{S} = \frac{2}{\vec{E}_{S}} = 0 \quad \text{(E=0)}$ $\leq E \ll \frac{1}{r^2}$ Medical / Non Medical B.Tech / Foundation alecareer.org /// Mob/Whatsapp/PTM No. 8285826569

An election is revolving aland a long line charge having. charage density 2×10⁸ C/m. Find the K.E of the election. assume that it is indefedent of the radius of election. When election is revolving around the twe charge density of line then the electrostatic zorde will balance the. Enterfebral force. orbit = 2×10° c/m. 501 $F_e = \frac{mV^L}{v}$ $E = \frac{1}{4\pi z} \frac{2'\lambda}{\gamma}$ $q E = \frac{\partial N^2}{v}$ $\left\{ \begin{array}{c} 27 \\ 47 \\ 47 \\ \end{array} \right\} = \frac{m \sqrt{2}}{\gamma}$ $\mathcal{M}V^2 = \frac{2q}{4\pi4}$ $KE = \frac{1}{2}mv^2 = \frac{\frac{9}{2}7}{4\pi\epsilon}.$ $= \frac{1.6 \times 10^{-19} \times 2 \times 10^{-8} \times 9 \times 10^{-9}}{-19 - 8 + 9}$ = 28'8 × 10 = 28.8 × 10⁻¹⁸ J. I porticle of mass 7×10⁵ g is beforer a large horizontal. Sheet of charge density+5×10⁵ c/m². What charge should. be given to the porticle, so that if released, it does not Jobly. $m = 9 \times 10^{-5} g$ 35


Fe = mg = qE. $\Rightarrow mg = g(\frac{\sigma}{2\xi})$ Tot sheet of charge E = J g=2mg=20 $q = \frac{2 \times 9 \times 10^{-5} \times 9.8 \times 8.85 \times 10^{-12} \times 10^{-3}}{5 \times 10^{-5}}$ $= 312.228 \times 10^{-12-3+1} = 312.228 \times 10^{-15} C$ A large plane sheet of large having surface charge. density 5×10⁻¹⁶ C/m² lies in the x-y plane. Find the electric flerx through a circular area of sachins 0.1m, if the normal to the circular area makes an angle of 60° in the social of the circular area makes an angle of 60° will the zaxis. D COT N. R= 0.1m. $\frac{50}{10} = 5 \times 10^{-16} \frac{1}{m^2} + \frac{1$ 0=60°. Forsheet $\phi = \vec{E} \cdot d\vec{s}$ $E = \frac{D}{25}$ \$= E.ds. Goo. $\phi = \frac{D}{2\varepsilon_{x}} \cdot \pi R^{2} \cdot Gos 60^{\circ}$ $\phi_{-} = \frac{5 \times 10^{-} \times 22 \times 0.1 \times 0.1 \times 1}{2 \times 7 \times 2}$ -16+12 - <u>5×22×0.01</u> × 10 4×7×8.85 $= 4.44 \times 10^{-3} \times 10^{-4}$ \$= 4.44 × 10-7 Wb.

$$\begin{array}{c} \begin{array}{c} & & \text{if fluical shall of metal has a rodius 9025 m and carries a change of 0.2 MC. Calculate the electric field intensity at a point. 0 Sociel the shall. (a) Just orteide (b) Just orteide (c) Just$$



Abbijit's Institute of Engineers
Snew in GP =
$$U = \frac{1}{2} cv^2 = \frac{1}{2} \frac{q^2}{q^2} = \frac{1}{2} \frac{q}{q}$$
 \longrightarrow Unit $\sqrt{n^3}$.
Snew that for unit Value $\Rightarrow U = \frac{1}{2} c_0 E^2$ \longrightarrow Unit $\sqrt{n^3}$.
A foodled flak Goburton of 300 /k F in clonged to 200 V. If the dislower half will be the food between ell flakes? unled unit like the food between ell flakes? unled unit like the food between ell flakes? unled unit like the food energy?
Start $\frac{1}{44} = \frac{1}{44}$ $\frac{1}{44} = \frac{1}{46} = \frac{1}{10000000}$ $V = 0.06 \times 10000000$
 $\frac{1}{6} = \frac{1}{64}$ $\frac{1}{44} = \frac{1}{2} = \frac{1}{2}$ $V = \frac{1}{600} < 0.000000$
 $\frac{1}{6} = \frac{1}{64}$ $\frac{1}{44} = \frac{1}{2} = \frac{1}{2}$ $V = \frac{1}{600} < 0.000000$
 $\frac{1}{6} = \frac{1}{64}$ $\frac{1}{44} = \frac{1}{2} = \frac{1}{2}$ $V = \frac{1}{600} < 0.000000$
 $\frac{1}{6} = \frac{1}{64}$ $\frac{1}{44} = \frac{1}{2} = \frac{1}{2}$ $V = \frac{1}{600} < 0.000000$
 $\frac{1}{6} = \frac{1}{64}$ $\frac{1}{44} = \frac{1}{2} = \frac{1}{2}$ $V = \frac{1}{600} < 0.000000$
 $\frac{1}{6} = \frac{1}{64}$ $\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$ $\frac{1}{2} = \frac{1}{2} < \frac{1}{2} = \frac{1}{2} < \frac{1}{2} = \frac{1}{2} < \frac{1}{2} = \frac{1}{2}$

43

Medical / Non Medical B.Tech / Foundation